1 / 3
"공대"으로 검색하여,
28 건의 기사가 검색 되었습니다.
-
2025-03-11▲ 김영오 서울대학교 공과대학장(앞줄 왼쪽에서 다섯 번째), 최성안 삼성중공업 대표이사 부회장(앞줄 왼쪽에서 네 번째)[출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 2025년 3월10일(월) 관악캠퍼스에서 삼성중공업과 함께 조선 및 관련 산업 분야 전반에 대한 지속적 협력과 유기적인 산학협력 체계 구축을 위한 산학협력 업무협약을 체결했다.2016년 시작된 삼성중공업-서울대(SHI-SNU) 산학협력은 올해로 10년 차를 맞이했다. 양 기관은 이번 협약을 통해 향후 5년간 미래에 대비한 최신 조선해양기술 습득에 협력한다.조선해양을 비롯해 자동화, 공정, 원자력, 인공지능(AI) 등 다양한 분야의 산학과제 및 공동연구를 함께 수행한다. 또한 우수인재 확보 및 교육, 재직자 교육에 있어서도 향후 긴밀하게 협조할 예정이다.이날 협약식에는 김영오 서울대 공과대학장과 이신형 조선해양공학과장, 최성안 삼성중공업 대표이사 부회장과 이동연 부사장 등이 참석했다.김영오 학장은 “이번 협약을 계기로 조선이라는 플랫폼 안에서 융합기술이 함께 녹아드는 선도 사례를 함께 만들어 나가길 기대한다”고 밝혔다.이에 최성안 부회장은 “양 기관이 앞으로도 20년, 30년 동안 다양한 분야에서 산학협력을 지속하며 미래를 향한 재도약의 발판을 마련하길 희망한다”고 화답했다.
-
▲ 왼쪽부터 서울대학교 재료공학부 임현우 박사(제1저자), 서울대학교 재료공학부 김진영 교수(교신저자), 국민대학교 응용화학부 이찬우 교수(교신저자), 한국과학기술연구원 유성종 박사(교신저자)[출처=서울대학교]서울대(총장 유홍림) 공과대학(학장 김영오)에 따르면 재료공학부 김진영 교수 연구팀이 국민대 이찬우 교수, 한국과학기술연구원(KIST) 유성종 박사 연구팀과 함께 차세대 친환경 수소 생산을 선도할 전기화학 촉매를 개발했다.연구팀이 설계한 코어-쉘(Core-shell) 구조의 루테늄(Ru) 기반 나노클러스터 촉매는 극소량의 귀금속 사용만으로도 세계 최고 수준의 성능과 안정성을 확보했다는 평가를 받고 있다. 실제 산업용 수전해 장비에 적용 시에도 뛰어난 효율을 입증했다.이번 연구 결과는 촉매 분야의 저명 학술지인 ‘Energy & Environmental Science (IF: 32.4, JCR 상위 0.5%)’ 최신호에 게재됐다. 특히 학술지의 커버 논문으로도 선정돼 연구의 혁신성과 학문적 가치를 입증했다.연소 시 이산화탄소를 배출하지 않는 수소는 기존 화석 연료를 대체할 친환경 에너지원이다. 이 친환경 수소의 생산에는 전기를 이용해 물을 수소와 산소로 분해하는 수전해 기술이 쓰인다.특히 전기 분해를 통해 고순도 수소를 생산하는 ‘음이온 교환막 수전해(이하 AEMWE)’는 차세대 기술로 주목받고 있다.이 기술을 상용화하려면 높은 효율과 안정성을 갖춘 촉매 전극의 존재가 필수적이다. 그러나 현재 대표적 촉매로 사용되는 백금(Pt)은 높은 비용과 빠른 열화(degradation)로 인해 상용화의 걸림돌이 되고 있다.때문에 그 대안으로 비귀금속에 기반한 촉매가 연구되고 있지만, 효율이 낮고 불안정한 촉매라는 한계가 있다. 이에 공동 연구팀은 백금 대비 2배 이상 저렴한 귀금속인 루테늄(Ru)에 기반한 ‘코어-쉘 나노클러스터 촉매(Core-shell Nanocluster Catalyst)’를 개발했다.촉매의 크기를 2나노미터(nm) 이하로 줄이고 귀금속 사용량을 현재 상용 중인 백금 촉매 전극의 3분의 1 수준으로 대폭 낮췄음에도 오히려 백금 촉매를 능가하는 성능을 달성하는 데 성공한 것이다.이 혁신적인 코어-쉘 촉매는 동일한 귀금속 함량에서 백금 촉매에 비해 4.4배 높은 성능을 기록했을 뿐 아니라 현재까지 보고된 수소 발생 촉매 중 세계 최고 수준의 성능을 나타냈다.또한 발포체 전극 구조를 갖춘 덕분에 반응물의 공급 속도가 최적화돼 높은 전류밀도에서도 탁월한 안정성을 보였다. 나아가 실제로 AEMWE가 활용되는 산업 환경에서도 상용 백금 촉매 전극에 비해 월등히 낮은 전력 소모량을 기록해 차세대 수전해 촉매의 강력한 후보로 자리매김했다는 평가다.연구팀은 개발 과정에서 먼저 과산화수소 처리를 통해 티타늄 발포체 기판 위에 얇은 티타늄 산화층을 형성한 후 전이금속 몰리브데늄(Mo)을 도핑했다.그리고 그 위에 1~2나노미터(nm) 크기의 루테늄 산화물 나노입자를 균일하게 증착했다. 이후 정교한 저온 열처리로 원자 수준에서 열확산을 유도해 독창적인 코어-쉘 구조를 형성했다.최종 단계에서는 수소 발생 반응 도중 발생하는 전기화학적 환원 반응을 통해 코어-쉘 구조의 환원을 유도했다. 그 결과 개발된 촉매는 루테늄 금속 코어에 다공성의 환원 티타니아(titania) 단일층을 갖고 그 계면에 금속성의 몰리브데늄 원자들이 존재하는 독특한 코어-쉘 구조를 갖추게 됐다.향후 ‘코어-쉘 나노클러스터 촉매’는 친환경 수소 생산의 효율을 획기적으로 향상시키는 동시에 귀금속 사용량도 줄여 수소 생산 비용을 크게 낮출 전망이다.고성능과 경제성을 겸비한 강점 덕분에 수소차를 비롯해 다양한 친환경 운송 수단의 연료로 쓰이고 수소 발전 등 관련 사업 분야에서 광범위하게 활용될 것으로 기대된다.나아가 이번 연구는 화석연료 중심의 에너지 시스템에서 벗어나 수소 경제의 실현 가능성을 한층 더 높일 수 있는 기술적 돌파구를 마련할 것으로 예상된다.논문의 제1저자인 임현우 박사는 우수한 연구성과를 바탕으로 올해부터 정부의 세종펠로우십 사업의 지원을 받아 서울대학교 재료공학부 김진영 교수의 연구실에서 박사후연구원으로서 연구를 이어가는 중이다. 특히 이번에 개발한 촉매의 구조인 ‘코어-쉘 구조’를 실제로 상용화하는 후속 연구를 집중적으로 수행할 예정이다.서울대 김진영 교수는 “2nm 미만의 극소형이면서도 우수한 성능과 안정성을 지닌 코어-쉘 촉매는 앞으로 나노 코어-쉘 소자 제작 기술, 그리고 탄소중립 시대를 앞당길 수소 생산 기술의 발전에 중대한 기여를 할 것이다”고 강조했다.
-
2025-03-10▲ 항공안전기술원 제5대 황호원 원장[출처=항공안전기술원]항공안전기술원에 따르면 2025년 3월6일(목) 제5대 원장으로 황호원(黃鎬元) 한국항공대 항공우주정책대학원 원장이 부임했다.황호원 신임 원장은 1960년 서울 출신으로 성균관대 법학 학사, 동대학원 석사를 거쳐 독일 요하네스 구텐베르크 마인츠 대학원에서 법학 박사학위를 취득했다.이후 한국항공대 항공교통물류학부 교수로 재직하며 항공 정책 및 법률 분야에서 연구와 교육에 힘써왔다. 한국항공대 항공우주정책대학원 원장, 한국항공우주정책법학회 부회장, 한국항공보안학회 회장 등의 직책을 맡아 항공 안전 정책 발전에 기여해왔다.또한 황 원장은 오랜 기간 항공업계에서 폭넓은 네트워크를 구축하며 글로벌 협력과 현장 중심의 정책 추진 역량을 갖춘 전문가로 평가받고 있다.▲ 항공안전기술원 제5대 황호원 원장 이취임식[출처=항공안전기술원]황 원장의 임기는 3년으로 2028년 3월까지 제5대 항공안전기술원 원장으로서 직무를 수행할 예정이다. 대한민국 항공 안전 기술의 혁신을 선도하고 글로벌 항공 시장에서 주도적인 역할을 할 수 있도록 총력을 기울일 계획이다.항공안전기술원(KIAST)은 민간항공기·공항·항행시설·경량항공기·초경량비행장치 등에 대한 안전성·성능 등을 시험하고 인증하는 업무를 수행하고 있다.또한 항공 안전에 영향을 주는 위해요인 식별·분석, 항공사고 예방기술 개발 및 국제표준 연구 수행 등 항공 안전 확보를 위해 설립된 국토교통부 산하 공공기관이다.황 원장은 “급변하는 항공 환경 속에서 기술 혁신과 안전 강화를 통해 대한민국이 글로벌 항공 안전 리더로 자리 잡을 수 있도록 최선을 다하겠다”며 “항공안전기술원이 대한민국 항공 안전의 중심 기관으로서 더욱 성장할 수 있도록 최선을 다하겠다”고 포부를 밝혔다.
-
▲ 왼쪽부터 서울대학교 기계공학부 김도년 교수(교신저자), 김재훈 박사(공동 주저자), 임재경 박사(공동 주저자, 현 삼성전자 근무)[출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 기계공학부 김도년 교수 연구팀 논문이 반도체 운영 분야 국제 학술지 ‘IEEE Transactions on Semiconductor Manufacturing (이하 IEEE TSM)’에서 2024년 최우수논문상(Best Paper Award)을 수상했다.해당 분야의 가장 권위 있는 저널 중 하나인 IEEE TSM은 반도체 공정 및 생산 관련 최신 기술과 응용을 다루며 1년 동안 해당 저널에 게재된 논문들 중 가장 우수한 1편을 최우수 논문(Best Paper)으로 선정해 시상한다.김도년 교수팀의 또 다른 논문은 2021년 IEEE TSM에서 우수 논문(Best Paper Award: Honorable Mention) 3편 중 하나로 선정된 바 있다. 3년 만에 같은 저널에서 최우수논문상을 수상하는 쾌거를 이뤘다.연구팀은 ‘Hotspot Prediction: SEM Image Generation with Potential Lithography Hotspots’ 제하의 이번 논문에서 리소그래피 공정 중 결함이 발생할 수 있는 취약 부위를 리소그래피 패턴 정보만으로 미리 예측할 수 있는 딥러닝 기술을 제시했다.이는 취약 부위에 대한 선제적인 설계 변경 등을 통해 반도체 생산 수율을 높이고 비용은 줄일 수 있는 핵심 기술이라는 평가를 받고 있다.논문의 주저자인 김재훈 박사는 “뜻깊은 상을 받게 돼 큰 영광이며 함께 연구에 참여하신 모든 분들께 감사드린다”고 인사를 전하며 “이번 성과를 발판 삼아 반도체 공정의 계측 및 검사 기술에 관한 연구에 정진하겠다”고 밝혔다.김재훈 박사는 현재 서울대 기계공학부에서 박사후연구원으로서 연구 활동을 이어가고 있다. 특히 적은 데이터만으로도 학습이 가능한 딥러닝 모델을 개발하고 실제 산업 현장에서도 활용되도록 그 응용 범위를 확장하는 연구를 진행 중이다.공동 주저자인 임재경 박사는 “이번 연구 결과가 2024년 최우수 논문으로 선정돼 매우 기쁘며, 연구를 지원해주신 많은 분들께 고맙다는 말씀을 드리고 싶다”며 “앞으로 반도체 제조 분야의 발전을 위해 지속적으로 노력하겠다”고 각오를 밝혔다.서울대 기계공학부에서 박사 학위를 취득한 임재경 박사는 현재 삼성전자 DS 부문에서 주사현미경과 전자빔 검사를 활용해 반도체 불량을 검출하는 업무를 수행하고 있다.◇ 참고 자료- 상: 2024 IEEE Transactions on Semiconductor Manufacturing Best Paper Award- 논문명: Hotspot Prediction: SEM Image Generation with Potential Lithography Hotspots- 논문저자: 김재훈*, 임재경*, 이진호, 김태연, 남윤형, 김기현, 김도년 (*공동 제1저자)
-
▲ 시계 방향으로 서울대학교 재료공학부 문동훈 연구원(단독 1저자), 이원식 연구원(참여저자), 장혜진 교수(참여저자), 이관형 교수(교신저자), 한정우 교수(참여저자)[출처=서울대학교 공과대학]서울대(총장 유홍림) 공과대(학장 김영오)에 따르면 재료공학부 이관형 교수 연구팀이 다양한 기판 위에서 웨이퍼 면적의 단결정(single-crystal) 2차원 반도체를 직접 성장시킬 수 있는 신기술 ‘하이포택시(Hypotaxy)’를 세계 최초로 개발했다.같은 학부의 장혜진, 한정우 교수 연구팀과 함께 연구했다. 이번 연구 결과는 2025년 2월20일 세계 최고 권위의 학술지 ‘네이처(Nature)’에 게재됐다.최근 인공지능(AI) 기술 발전에 따라 반도체 성능 향상의 필요성이 커졌고 소자의 전력 소모를 줄이려는 연구 또한 활발해졌다.따라서 기존의 실리콘을 대체할 새 반도체 소재가 주목받는 중인데 그중 얇은 두께와 뛰어난 전기적 특성을 지닌 2차원 물질 ‘전이금속칼코겐화물(Transition metal dichalcogenide, 이하 TMD)’이 차세대 반도체로 주목받고 있다. 그러나 이를 높은 품질로 합성해 산업적으로 활용할 수 있는 대량 생산 기술이 부족한 실정이다.현재 가장 유망한 합성 기술인 화학기상증착법(chemical vapor deposition, CVD)은 전기적 특성의 저하, 성장한 TMD의 전사(transfer, 다른 기판으로 옮기는 추가 공정) 등의 문제를 안고 있다.높은 결정성(crystallinity)을 갖는 기판 위에서 TMD를 성장시키는 ‘에피택시(epitaxy)’ 방식도 성장 후 전사 과정이 수반되고 특정 기판만 사용 가능하다는 한계가 있다.반도체 및 박막 소재 제작에 필수적인 기술로 여겨졌던 이 방식은 합성 시 TMD의 결정성, 표면, 층수가 불균일해 전기적 성능이 저하되는 약점도 존재한다.고품질 TMD에 기반한 고도의 3차원 집적화 기술 개발이 현대 반도체 산업의 필수 과제로 부각됨에 따라 새로운 TMD 합성 기술의 필요성이 절실한 상황이었다.이에 연구진은 기존에 보고된 적 없는 새로운 성장법을 개발해 이 문제를 해결했다. 그래핀과 같은 2차원 물질을 템플릿으로 활용해 TMD의 결정이 정렬된 형태로 성장하도록 유도하는 방식을 고안햤다.어떤 기판에서도 완벽한 단결정 TMD 박막을 합성할 수 있는 ‘하이포택시(Hypotaxy)’ 기술을 세계 최초로 구현한 것이다.박막이 하부 방향으로 성장한 특성을 반영해 이 합성법을 ‘아래 방향’을 의미하는 ‘하이포(hypo)’와 ‘정렬’이란 뜻의 ‘택시(taxy)’를 접목한 ‘하이포택시’로 명명했다.반도체 제조 공정과의 호환이 가능한 저온(400℃)에서도 단결정 TMD를 성장시킬 수 있는 이 기술은 산업적으로 큰 의미를 지닌다.후처리 없이 템플릿이 자연적으로 제거되며 금속 박막 두께를 조절해 TMD의 층수까지 정밀하게 제어할 수 있다는 점에서도 기존 방식과 크게 차별화된다.이번 기술을 이용해 합성한 TMD로 만든 반도체 소자가 높은 전하 이동도와 우수한 소자 균일성을 보임으로써, ‘하이포택시’가 반도체 소자의 고성능화·고집적화 및 차세대 2차원 반도체 상용화에 기여할 핵심 기술로 활용될 가능성이 커졌다.아울러 ‘하이포택시’는 단순히 2차원 반도체 성장 기술에 그치지 않고 모든 결정질 박막 물질의 성장에도 적용 가능한 혁신적 기술이라는 평가를 받고 있다.기존 반도체 제조 방식의 한계를 극복했을 뿐 아니라, 템플릿을 통해 결정 방향 및 구조를 원하는 대로 조절할 수 있는 완전히 새로운 방식을 세계 최초로 제안했기 때문이다.현재 서울대 재료공학부에서 박사과정을 밟고 있는 문동훈 연구원은 기존에는 합성이 불가능해 다양한 측정에 제약이 있었던 무아레 구조(Moiré structure)를 하이포택시 성장법으로 합성시키는 연구에 주력하고 있다.이전의 합성법으로는 대면적 고품질 성장이 어려웠던 다양한 신물질에 하이포택시 기술을 적용시키는 연구도 수행하고 있으며, 향후 박사후연구원으로서 연구를 이어 나갈 예정이다.연구를 지도한 이관형 교수는 “우리가 개발한 하이포택시(Hypotaxy) 기술은 1930년대에 최초로 그 개념이 제안돼 현대 전자소자 개발을 이끈 에피택시(Epitaxy) 기술의 한계를 돌파했다”고 이번 연구의 의미를 짚으며 “하이포택시는 차세대 AI 반도체의 기반이 되는 3차원 집적을 가능케 한 만큼 재료공학 분야에서 혁신적인 접근법으로 자리매김하리라 기대한다”고 밝혔다.논문의 단독 1저자인 문동훈 연구원은 “다양한 소재를 고품질로 합성하는 대표적 기술인 에피택시에 대한 관념과 틀을 깨는 것이 가장 큰 도전이었다”고 연구 과정을 돌아보며 “기판의 종류와 관계없이 단결정 성장이 가능한 하이포택시 기술이 바로 에피택시에 대한 역발상에서 나왔듯 이번 성과가 앞으로 신물질 개발과 새로운 격자 구조의 합성 등의 분야에서 기존 연구들을 뛰어넘는 혁신적인 연구를 촉진하는 마중물이 되길 바란다”고 말했다.
-
▲ ’우주특공대 바이오맨 x 빛의 전사 마스크맨 한국 출시 35주년 기념 팬미팅’ 장면[출처=컴투스홀딩스]컴투스홀딩스(대표 정철호)에 따르면 자회사 컴투스플랫폼(대표 최석원)은 웹3 마켓플레이스, ‘X-PLANET’이 주최한 ‘우주특공대 바이오맨’과 ‘빛의 전사 마스크맨’의 팬미팅을 성공적으로 마무리했다.이 행사에는 바이오맨과 마스크맨의 주연 배우들과 바이오맨의 주제곡을 부른 가수, 미야우치 타카유키가 등장해 분위기를 띄웠다.배우들은 무대에서 멋진 변신 포즈를 취하며 관객들의 호응을 이끌어 내기도 했다. 두 작품의 주연 배우들은 MC들과 기억의 남는 에피소드를 주제로 대화를 나누며 촬영 당시의 추억을 되살렸다.또한 객석으로 들어가 사진을 촬영하는 등 관객들과 밀접한 거리에서 호흡했다. 이 외에도 바이오맨과 마스크맨의 영상과 음악, 슈트 액터들의 공연 각 배우별 에피소드 영상도 풍성한 볼거리를 제공했다.이번 프로젝트는 공식 지식재산권(IP) 홀더인 일본 토에이 컴퍼니와 국내 라이센스를 보유한 대원미디어의 협력을 통해 진행됐다.팬 미팅에 참여한 한 관객은 “모든 관객들이 35년의 시간을 거슬러 다시 소년이 됐다. 함께 바이오맨과 마스크맨의 주제가를 부르고 사진을 찍고, 사인을 받으며 보낸 모든 시간이 꿈결같다”고 소감을 밝혔다.
-
▲ 서울대 해동첨단공학관에서 열린 제32회 로보콘 대회[출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 최근 해동첨단공학관에서 기계공학부의 로봇 만들기 프로젝트 수업인 ‘창의공학설계’ 수강생들이 참가한 제32회 로보콘 대회를 개최했다. ‘창의공학설계’의 아이콘인 ‘로보콘’ 대회는 수강생 전원이 수업에서 제작한 로봇으로 팀별 승부를 겨루는 경진대회다.강의와 실습에서 기계 작동 원리 및 설계 원칙을 배운 새내기 학생들은 ‘관악캠퍼스 수해 복구’처럼 매년 주어진 과제에 맞는 로봇을 만들어 미션을 수행하는 시합을 벌인다.1위 팀은 도쿄공업대, 상하이교통대, 싱가폴국립대 등이 참여하는 국제 로보콘 대회 출전권을 얻어 세계 무대에서 실력을 발휘할 기회를 누릴 수 있다.처음으로 ‘다자유도 텔레오퍼레이션(teleoperation) 로봇팔’이 도입된 올해 수업의 수강생들은 2024년 11월29일 열린 제32회 로보콘 대회에서 동일한 모터를 활용해 각기 다른 모양과 기능의 로봇팔을 선보였다.약 60명의 참가자들은 기본 장비에 참신한 아이디어를 더해 더 섬세한 로봇팔, 더 기동력 있는 몸통을 구현하는 데 중점을 뒀다.올해는 ‘흑백요리사’를 주제로 두 팀이 주어진 요리를 만들어서 서빙을 하는 미션으로 시합을 벌였다. 요리사 로봇이 식재료를 담고 장애물을 통과해 서빙 업무를 수행하는 치열한 대항전을 치룬 결과, 24학번 학생 5명으로 구성된 ‘조립왕’ 팀이 우승의 영예를 안았다.우승팀의 리더를 맡은 정재원 학생은 “72시간 동안 자지 않고 버틸 수 있다는 걸 이번 대회를 준비하며 처음 알았다”고 로보콘 준비에 쏟은 노고를 돌아보며 “경기 초반에 전선을 정리하지 못한 초보적인 실수로 로봇을 처음부터 재조립했는데 그 경험 덕분에 유사한 상황에서 침착하게 대응한 점이 우승의 비결”이라고 밝혔다.같은 팀의 임도현 학생은 “한 학기 동안 아침에 일어나서 밤에 잠들 때까지 하루 종일 어떻게 해야 로봇을 더 잘 만들 수 있을지 한 가지만 생각했던 행복한 시간이었다”며 “로봇공학처럼 저절로 몰두하게 만드는 일을 평생 직업으로 삼고 싶다”고 말했다.‘육하하하’ 팀의 윤종환 학생은 “안정적인 직장을 얻고 싶어 기계공학부에 진학했는데 창공을 수강한 후 앞으로 더 큰 도전을 해보고 싶다는 생각이 들었다”고 참가 소감을 남겼다.‘창의공학설계(창공)’는 신입생들이 직접 로봇을 만드는 과정에서 함께 협업하고 경쟁하며 진정한 공학자로 성장할 수 있도록, 고(故) 주종남 기계공학부 교수가 1993년 처음 도입한 전공 과목이다.학생들은 임무를 완수하는 로봇을 설계하고 이를 현실에서 구현하며 창의적 아이디어를 실현하고 문제 해결 능력을 키우는 기회를 갖는다.매사추세츠 공과대(MIT), 스탠포드대 등 세계 초일류 대학의 대표 강좌에 버금가는 역사와 전통을 자랑하는 이 수업은 서울대의 대표적인 창의력 교육 과정으로 손꼽힌다.매 학기마다 새로운 수업 주제와 로봇 부품으로 교육이 이뤄지는 등 끊임없이 기술의 발전상을 커리큘럼에 반영해 온 노력은 창의공학설계가 서울대 공대의 전통으로 자리매김한 요인으로 꼽힌다.2023년부터는 컴퓨터응용설계와 소프트웨어의 기초를 배우는 창의공학설계1, 로봇 하드웨어와 모터제어 및 기초회로를 추가로 배우고 실제 로봇을 제작하는 창의공학설계2의 두 학기 과정으로 나뉘어 운영하고 있다.기계공학부 이호원 교수는 “서울대 기계공학부에만 3명의 교수가 창공 수상자 출신일 정도로 이 수업에 적극적으로 참여한 학생들이 향후 우수한 공학도로 성장하는 비율이 높다”고 설명하며 “앞으로도 매해 새로운 시도를 통해 도전적인 차세대 공학자들을 육성할 계획”이라고 밝혔다.
-
2024-12-20▲ ‘주종남 창의공학 스튜디오’ 입구에 마련된 추모월을 오픈하는 참가자들. 왼쪽부터 현송재단 김정일 이사장, 고(故) 주종남 교수 유가족 이화준 씨, 김영오 서울대 공과대학장, 김재영 연구부총장, 김호영 기계공학부장, 조규진 창의공학설계 담당 교수 [출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 2024년 12월3일(화요일) 관악캠퍼스 39동에서 학내외 인사 약 30명과 학생 60여 명이 참석한 가운데 ‘주종남 창의공학 스튜디오’ 개관식을 열었다.‘주종남 창의공학 스튜디오’는 32년 전 학부생들의 로봇공학 입문 수업인 ‘창의공학설계’를 처음 도입했던 고(故) 주종남 교수(2019년 작고)를 기념하는 의미에서 이름을 명명했다. 해당 수업이 이뤄졌던 노후 실습실을 리모델링해 첨단 스튜디오로 재 탄생했다.이날 행사에는 김영오 서울대 공과대학장과 전현직 연구부총장 등 학내 주요 인사를 비롯해 리모델링 비용을 지원한 김정일 현송교육문화재단(이하 현송재단) 이사장, 고(故) 주종남 교수의 유족 등이 참석해 자리를 빛냈다.이번에 개관한 스튜디오에서 앞으로 진행될 ‘창의공학설계’는 기계공학부 신입생들이 팀을 이뤄 직접 로봇을 만들고 로보콘 경기에서 승부를 겨루는 수업이다.도전적인 공학 문제를 창의적 아이디어로 해결해 가는 과정을 학생들이 직접 경험하는 서울대의 대표적인 창의력 교육과정이다.주종남 창의공학 스튜디오는 2024학년도 2학기 창의공학설계 수업에 활용된 바 있다. 수강생들은 함께 준비한 감사편지를 통해 이 공간에서 친구들과 웃고 웃으며 많은 시간을 보낸 결과, 어제와 다른 사람으로 성장할 수 있었다며 현송재단과 고(故) 주종남 교수에 대한 감사의 마음을 전했다.김영오 공과대학장은 “그간 ‘창고형 작업실’로 불리던 낡은 공간이 차세대 로봇 인재를 길러내는 첨단 공간으로 변신했다”며 “현송재단의 지원에 감사를 표하며, 이 공간이 로봇 인재의 산실로 자리매김하길 바란다”고 밝혔다.김정일 현송재단 이사장은 학생들이 만든 로봇을 차례로 둘러본 뒤 “AI 시대에도 공학자는 문제를 제 손으로 해결하는 ‘경험’을 통해 성장한다는 것은 변하지 않기 때문에 학생들이 이 공간에서 마음껏 도전하며 많이 실패하는 경험을 거쳐 더 큰 공학자로 성장했으면 한다”고 현송재단의 철학을 전했다.
-
▲ 왼쪽부터 서울대 기계공학부 조규진 교수(교신저자), 엄재민 박사과정생(제1저자), 유성렬 박사과정생(제2저자)[출처=서울대학교 공과대학]서울대(총장 유홍림) 공과대(학장 김영오)에 따르면 기계공학부 조규진 교수(인간중심 소프트 로봇기술 연구센터장) 연구팀이 효율적인 픽 앤 플레이스(pick-and-place) 작업을 위해 사람처럼 여러 물체를 한 번에 옮길 수 있는 로봇 그리퍼를 개발했다.이 기술은 물체를 동시에 옮길 뿐만 아니라 원하는 위치에 정렬할 수 있는 기능까지 구현했기 때문에 비정형 환경에서도 활용 가능성이 크다.2024년 12월12일(목요일) 로봇 분야의 저명한 국제 학술지 ‘사이언스 로보틱스(Science Robotics)’에 연구 성과인 '사람의 손동작 원리를 분석해 로봇 그리퍼에 성공적으로 적용한 사례'를 게재해 학계의 주목을 받았다.연구의 출발점은 ‘다물체 파지(multi-object grasping)’로 불리는 사람의 파지 방법이다. 연구팀은 2019년 공장에서 작업자들이 효율적 작업을 위해 물체를 하나씩 옮기지 않고 여러 개를 동시에 옮기는 모습을 보고 영감을 얻어 연구를 시작했다.조규진 교수는 “실제 사람의 손동작과는 다르게 기존의 그리퍼 연구들은 대부분 로봇이 한 번에 하나의 물체를 옮긴다는 가정 하에 발전해 왔다”고 말했다.“한 번에 여러 물체를 옮기는 다물체 파지 그리퍼도 개발된 바 있지만 여러 개의 작은 그리퍼들을 로봇팔 끝단에 배치한 형태라 정형화된 환경에서만 사용이 가능하다는 한계가 있었다”고 밝혔다.이러한 제약에 문제의식을 가진 연구팀은 비정형 환경에서도 그리퍼 활용이 가능하도록 사람의 다물체 파지 전략을 분석해 이를 적용한 로봇 그리퍼를 세계 최초로 개발했다.이 과정에서 핵심이 된 동작은 ‘손가락-손바닥 이동 동작(finger-to-palm translation)’과 ‘손바닥-손가락 이동 동작(palm-to-finger translation)’이다.예를 들어 사람들은 책상 위에 놓인 여러 물체를 손바닥에 모으기 위해 손가락으로 물체를 하나씩 잡고 손바닥으로 옮기는 과정을 반복한다.그리고 모은 물체들을 식탁 위로 함께 옮긴 후 다시 손가락으로 하나씩 잡아 원하는 위치에 배치할 수 있다.연구팀은 이 동작 원리를 로봇에 도입해 물체를 하나씩 잡아 저장하고 여러 물체를 한 번에 옮긴 뒤 다시 개별적으로 원하는 위치에 정렬할 수 있는 로봇 그리퍼를 개발한 것이다.이를 구현하기 위해 그리퍼의 손가락에 디커플링 링크(decoupling link)를 설치함으로써 물체를 파지하고 손바닥으로 전달하는 동작을 기구학적으로 분리해 제어를 간단히 해결했다.그리퍼의 손바닥은 유연한 털이 배열된 벨트형 구조로 물체를 안정적으로 저장하며 다양한 크기의 물체를 동시에 처리할 수 있도록 설계했다.이와 같이 독특한 하드웨어 설계를 통해 연구진은 사람의 복잡한 움직임을 로봇에 맞게 간단화시킨 후 적용했다. 총 3개의 모터만으로 모든 움직임을 구현하는 데 성공했다.연구진은 실험실 스케일의 데모를 통해 이번에 개발된 그리퍼가 다양한 비정형 환경에서 적용될 수 있음을 검증했다.먼저 물류 환경에서 그리퍼가 선반에 놓인 8개의 물체를 2번의 왕복 운동으로 옮길 수 있다. 이때 물체를 하나씩 옮기는 단일 물체 파지 방식과 대비해 공정 시간을 34% 절감, 로봇팔의 이동 거리를 71% 단축할 수 있다는 사실을 확인했다.또한 가정 환경에서는 책상에 놓인 물체들을 모두 저장한 뒤, 원하는 위치에 하나씩 놓을 수 있음을 검증했다.이처럼 연구진이 개발한 그리퍼는 물류 및 가정 환경 뿐 아니라 대표적인 비정형 환경으로 꼽히는 빈-피킹(bin picking, 여러 물건이 컨테이너, 수납함 등의 용기에 어지럽게 쌓여 있는 공정) 공정에도 적용이 가능할 것으로 기대된다.현재 조규진 교수 연구팀은 다품종 소량생산, 빈 피킹, 물류 공정 등 자동화가 이뤄지지 않은 다양한 공정에 이 기술을 적용할 수 있는지 검토 중이다. 벨트형 손바닥의 디자인을 타깃 물체에 맞게 최적화하는 연구에 매진하고 있다.제1저자인 박사과정 엄재민 연구원은 2025년 2월 졸업 후 박사 후 연구원으로서 다물체 파지 그리퍼의 경로 계획(path planning)과 벨트형 손바닥의 디자인 최적화 연구를 추가로 진행할 계획이다.연구책임자인 조규진 교수는 “자연의 원리는 효율적인 로봇 동작 설계에 대한 영감을 준다”며 “이때 단순히 자연의 동작을 모방하는 게 아니라, 핵심 원리를 로봇에 맞게 재구성하는 것이 로봇공학자의 역할”이라고 연구의 방향성을 설명했다.또한 “사람의 다물체 파지 방법에서 손안 이동 기술은 핵심적인 움직임인데 이번에 제안한 그리퍼는 이 원리를 최초로 로봇에 적용한 사례”라고 이번 연구의 의의를 강조했다.
-
2024-12-03▲ 모그립 로봇팔. 사람이 손가락으로 집어 손바닥에 올리면서 잡는 원리를 처음으로 적용했다 [출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 2024년 11월29일 관악캠퍼스 공학관에서 제1회 ‘서울대 로보틱스 데이(SNU Robotics Day)’를 성황리에 개최했다.‘로보틱스 데이’는 로봇 분야의 융합연구 성과를 선보이는 자리로 주제별 융합 연구를 지원하는 서울대 공대의 공학 혁신 프로그램 ‘킵 워치(Keep Watch)’의 일환이다.1부 행사에서는 서울대에서 로봇을 제작·연구·활용하는 공학자들이 연구실을 소개하고 로보틱스(Robotics) 연구성과와 로봇 데모를 발표다. 2부 행사에서는 ‘창의공학설계’ 수업 수강생 60명이 직접 만든 로봇으로 ‘로보콘’ 결승전을 치뤘다.김영오 공과대학장은 축사에서 “연구자들은 로봇과 같은 미래 핵심기술을 연구할 때 먼저 우리 사회가 무엇을 필요로 하는지, 사회의 가장 큰 이슈는 무엇인지부터 파악하고 공유해야 한다”고 말했다.또한 “그에 대응하는 기술 혁신의 방향성을 함께 찾기 위해 로봇 공학자들이 한자리에 모이는 로보틱스 데이를 처음으로 개최했다”고 행사의 취지를 강조했다.이어진 장병탁 서울대 AI 연구원장, 박종우 전 로봇학회 회장의 축사로 시작한 1부에서는 서울대 내 25개 연구팀이 최근 논문으로 발표했거나 개발 중인 로봇들의 제작 원리를 설명했다.현장에서 시연이 어려워 영상으로 소개된 대형 로봇, 수영 로봇, 수술 로봇, 우주 로봇 등은 참석자들의 눈길을 끌었다.새로 개관한 인공지능(AI) 교육연구 공간인 해동첨단공학관의 AI 로봇 클러스터에서는 40여 명의 연구원들이 로봇을 시연했다.특히 입구에서 안내봇 역할을 맡아 사람이 손을 내밀면 센서로 인식해 잡아주는 ‘휴머노이드 로봇’과 처음 인사를 나눈 참석자들은 사람이 직접 입을 수 있는 ‘웨어러블 로봇’을 접하는 시간을 가졌다.특수천으로 제작돼 가벼우면서도 무릎의 부하를 줄이는 ‘엑소 언로더 로봇’, 무거운 물건을 들 때 허리를 보조하는 조끼 모양의 ‘스쿼트 로봇’, 중량물 작업 시 척추가 부담하는 하중을 줄이는 ‘허리 동작 보조 웨어러블 슈트’, 사람의 고관절을 움직여 걷고 뛰는 기능을 향상시킨 ‘고관절 보조로봇’ 등이 선보였다.데모를 보여준 한 연구원은 인체를 보호하고 신체 능력을 높인다는 점에서 웨어러블 로봇의 목적은 모두 동일하지만, 소재부터 프로그램에 이르기까지 그 접근 방식은 매우 다양하다고 설명했다.기존에는 인간의 손을 통해서만 수행할 수 있었던 기능을 정밀하게 모사한 로봇들도 참석자들의 많은 관심을 받았다.사람이 손가락으로 물건을 집어 넓은 손바닥에 옮겨 담는 이동 원리를 로봇 분야에서 처음으로 구현한 ‘모그립 로봇’, 좁은 공간에 차곡차곡 접시를 정리하는 ‘접시 수납 로봇팔’의 데모는 서울대 연구팀의 우수한 기술력을 입증했다.개발에 참여한 한 연구원은 인간에게는 단순해 보이는 노동을 로봇이 수행하려면 탁월한 시각 지능과 판단 능력을 갖춰야 하는 만큼 이 로봇들은 수많은 도전 끝에 얻어낸 성공적인 결과물이라고 전했다.그 밖에도 수술 중 환자 조직과의 촉감을 측정해 마치 직접 손으로 수술할 때처럼 의료진의 손에 촉각 정보를 전해주는 ‘햅틱 수술 로봇’을 비롯한 의료용 로봇, 보스턴 다이너믹스(Boston Dynamics)의 개발 모델에 연구팀이 자체 개발한 공간인식 AI 프로그램을 설치해 미리 학습되지 않은 새로운 공간에서도 자유자재로 이동하도록 구현한 로봇 개 등도 많은 관심을 받았다.로봇 수십 대의 데모를 지켜본 로봇 전문기업의 표윤석 공학박사는 “발표와 데모를 통해 젊은 연구자들의 열정을 고스란히 느낄 수 있어 즐거운 시간이었다”면서 “당장 상용화를 시도하고 싶은 로봇도 많아 서울대와 적극적으로 협업할 필요를 느낀다”고 소감을 전했다.이날 행사의 2부는 로봇공학 기초 과목인 ‘창의공학설계’를 수강하며 미래의 로봇 공학자를 꿈꾸는 60명의 1학년 학생들이 직접 만든 로봇으로 팀별 대항전을 치르는 ‘로보콘’을 관람하는 시간으로 진행됐다.2024년 새로 도입된 다자유도 로봇팔의 기능을 창의적으로 활용한 ‘조립왕’ 팀이 접전 끝에 우승해 국제 로보콘 참전권을 획득하고 축하를 받으며 로보틱스 데이가 마무리됐다.로봇 분야의 대표적 국제 학회인 IEEE RAS (미국 전기전자공학회 산하 로봇자동화학회)의 제24대 회장을 역임했던 서울대 기계공학과 박종우 교수는 행사를 마친 후 “로봇의 시대는 인간의 외형을 지닌 기계가 판매되는 시기가 아니라 우리가 풀어야 할 문제를 지능을 갖춘 기계를 만들어 해결할 수 있는 시기이고 바로 지금이 로봇의 시대다”고 강조했다.또한 박 교수는 “지금도 지구상에는 로봇화를 통해서만 해결이 가능한 수많은 문제들이 산적해 있다. 앞으로 매년 가을에 열릴 로보틱스 데이가 이 같은 시대적 과제에 맞설 공학자들에게 창의적인 도전 정신을 고취하는 계기가 되길 바란다”고 밝혔다.
1
2
3