1 / 1
" 학장 김영오"으로 검색하여,
3 건의 기사가 검색 되었습니다.
-
2024-11-11▲ 좌측부터 김지환 연구원(협동과정 인공지능전공 석사과정), 강준오 연구원(전기정보공학부 박사과정), 한보형 교수(전기정보공학부, 협동과정 인공지능전공)[출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 전기정보공학부 한보형 교수가 지도하는 컴퓨터비전 연구팀(CVLAB)이 혁신적인 인공지능(AI) 기술 ‘피포 디퓨전(이하 FIFO-Diffusion)’을 개발했다.‘피포 디퓨전(이하 FIFO-Diffusion)’은 별도의 학습 없이 무한한 길이의 비디오를 생성할 수 있는 인공지능(AI) 기술이다. 기존 영상 생성 모델의 한계를 극복해 디퓨전 모델에 기반한 비디오 생성기술의 새로운 방법론을 제시했다는 평가를 받고 있다.이 기술을 제안한 논문 ‘FIFO-Diffusion: Generating Infinite Videos from Text without Training’은 2024년 10월 인공지능 및 기계학습 분야의 최고 권위 국제학술대회 ‘NeurIPS 2024 (Neural Information Processing Systems, 신경정보처리시스템학회)’의 발표 논문으로 채택돼 학계와 산업계의 주목을 받은 바 있다.NeurIPS는 인공지능 및 딥러닝 분야의 최신 연구 성과와 혁신적 기술이 발표되는 자리로 매년 엄격한 심사를 통과한 우수한 논문이 발표 논문으로 선정된다.기존의 비디오 생성 모델은 영상 길이가 길어질수록 메모리 소모가 급격히 증가해 대규모 하드웨어 자원이 필요했을 뿐 아니라 프레임 간 일관성 유지에 어려움이 있어 부자연스러운 영상을 생성하는 한계가 있었다.이에 연구팀은 메모리 사용량을 일정하게 유지하면서도 각 프레임이 자연스럽게 연결되는 영상을 생성하는 FIFO-Diffusion을 개발했다.개발된 기술은 사전에 짧은 클립을 통해 훈련된 디퓨전 모델이 추가 학습 없이 텍스트 조건에 맞춰 무한한 길이의 비디오를 생성하도록 설계됐기 때문에 고화질의 비디오를 장시간 생성할 수 있다.특히 이번 연구에서는 비디오 품질 개선을 위해 세 가지의 혁신적 기법이 활용돼 관심을 끌었다. 먼저 각기 다른 노이즈 레벨의 비디오 프레임을 일련의 큐(queue) 형태로 동시에 처리하는 ‘대각선 디노이징(diagonal denoising)’ 기법을 통해 디퓨전 모델이 품질 저하 없이 무한히 긴 비디오를 생성하는 것을 가능케 했다.이어서 프레임을 여러 블록으로 나눠 병렬 처리하는 ‘잠재 파티셔닝(latent partitioning)’ 기법으로 프레임 간 노이즈 레벨 차이를 줄였다.그리고 새로 생성될 프레임들이 이전에 생성된 더 깨끗한 프레임을 참조하도록 하는 ‘앞서보기 디노이징(lookhead denoising)’ 기술을 도입해 후반 프레임의 손실을 감소시켜 더욱 선명한 비디오 출력을 구현할 수 있었다.마지막으로 연구진은 비디오 생성 속도와 품질을 한결 높인 이 기법들을 다중 GPU에 병렬로 적용해 효율성을 극대화함으로써 무한히 긴 영상을 생성하는 비디오의 실현 가능성을 입증했다.FIFO-Diffusion 기술은 향후 영화, 광고, 게임, 교육 등 다양한 콘텐츠 산업에서 널리 활용될 것으로 기대된다. 기존의 텍스트 기반 비디오 생성 모델들은 3초 이내의 짧은 클립만 생성할 수 있어 실제 콘텐츠 제작에 이용되기 어려웠다.하지만 이러한 제약을 뛰어넘은 FIFO-Diffusion 기술이 상용화되면 길이에 대한 제한없이 더 자연스러운 비디오를 생성할 수 있다.또한 학습을 위한 대규모 하드웨어 자원이나 방대한 데이터를 필요로 하지 않는 강점 덕분에 FIFO-Diffusion이 AI에 기반한 영상 콘텐츠 제작을 한층 활성화될 전망이다.연구를 지도한 한보형 교수는 “기존 비디오 생성 모델의 한계를 깬 FIFO-Diffusion은 별도의 학습 없이 무한한 길이의 비디오를 생성한다는 새로운 개념을 수립했다는 점에서 의미가 남다르다. 향후 이 기술을 바탕으로 다양한 후속 연구를 이어 나갈 계획이다”고 밝혔다.논문의 주 저자인 김지환 연구원은 “이번 개발로 비디오 생성 기술이 영상 콘텐츠 분야에서 폭넓게 사용될 수 있는 토대가 마련됐다”고 연구의 의미를 설명했다.한편 연구 논문의 공동 제1저자인 김지환, 강준오 연구원은 현재 서울대 컴퓨터비전 연구실에서 비디오 생성 분야의 후속 연구를 심도 깊게 수행하고 있다.
-
▲ (좌측부터) 강유 서울대 인공지능협동과정/컴퓨터공학부 교수, 김종진 컴퓨터공학부 박사과정생[출처=서울대학교 공과대학]서울대(총장 유홍림) 공과대학(학장 김영오)에 따르면 인공지능(AI) 협동과정/컴퓨터공학부 강유 교수 연구팀이 다양화 추천을 고려한 개인화 순차 추천 기술을 개발했다.연구팀이 개발한 사용자 간 순서를 고려한 다양화 추천 기술 ‘사피드(Sequentially Diversified Recommendation via Popularity Debiasing and Item Distribution, 이하 SAPID)는 상품 추천시 다양성 보장이 어려운 점을 극복했다.‘다양화 추천(Diversified Recommendation)’이란 온라인 쇼핑몰 등의 플랫폼에서 판매하는 상품들을 제외되는 품목 없이 골고루 사용자들에게 추천하는 시스템을 말한다. 전자상거래 플랫폼의 수익을 극대화하는 핵심 요소이기 때문에 최근 관련 연구들이 주목받고 있다.기존 연구들은 플랫폼 사용자 개개인의 선호 상품 정보를 취합한 후 선호도가 비슷한 상품 중 다른 사용자들이 좋아하지 않는 아이템을 추천하는 방식으로 다양화 추천에 접근했다.그러나 이 방식은 미래의 사용자가 어떤 상품을 선호할지에 관한 정보는 사전에 반영시킬 수 없기에 앞으로 이뤄질 상품 추천의 다양성은 보장하기 어려웠다.SAPID는 사용자들의 과거 구매 데이터를 바탕으로 미래의 상품별 수요를 예측해 현재 어떤 상품을 추천해야 다양성이 높아질지 판단하는 원리로 작동된다.연구진은 각 상품의 플랫폼 등장 빈도를 참조해 유명 제품에 편중되지 않게 아이템을 추천하도록 SAPID 모델을 훈련 데이터셋으로 학습시켰다.이 과정을 거친 SAPID는 플랫폼 사용자에게 아직 추천되지 않은 상품이나 인기도가 낮은 상품을 우선적으로 추천함으로써 다양성을 증대시키는 역할을 수행한다.앞으로 개발된 기술은 사용자들에게 순차적으로 상품을 추천해야 하는 여러 이커머스 플랫폼에서 기대 수익을 극대화하는 기술로 활용될 것으로 기대를 모으고 있다.SAPID를 통해 쇼핑몰 메인 화면에 각 상품이 노출되는 순위를 조정하면 전체적인 상품 판매량을 늘리고 재고를 줄일 수 있기 때문이다.정헌재단의 학술연구 지원을 받아 수행된 본 연구의 성과는 2025년 3월 데이터 마이닝 및 머신 러닝 분야의 최우수 학회인 ‘WSDM (Web Search and Data Mining) 2025’에 발표될 예정이다.한편 연구논문의 제1저자인 서울대 컴퓨터공학부 김종진 박사과정생은 순차 번들 추천 과정에서도 추천 품목의 다양성을 반영시키는 연구를 진행 중이다.강유 교수는 “상품 추천의 정확성과 다양성을 모두 제고할 수 있는 SAPID는 학문적 가치뿐 아니라 실용성도 높은 기술이다. 향후 온라인 쇼핑몰이나 온라인 콘텐츠 제공 서비스의 매출 증대 및 재고 소진에 크게 기여할 것으로 전망된다”고 포부를 밝혔다.
-
▲ 서울대 항공우주공학과 여재익 교수[출처=서울대학교 공과대학]한국 최고 명문대학인 서울대 공과대(학장 김영오)에 따르면 항공우주공학과(학과장 이관중 교수) 여재익 교수 연구팀이 미국 공군연구소(Air Force Research Lab, AFRL)의 지정연구실로 선정됐다.여 교수는 미공군연구소와 협력해 초고용량 리튬이온 배터리의 열폭주 제어에 관한 연구를 진행하며 다년간 연구비를 지급받게 된다. 여재익 교수는 현재 한국연소학회 회장을 맡고 있다.특히 연구능력 검증 시 실적보고 및 중간평가 등의 절차가 대폭 간소화되는 효율적인 평가지원 체제 하에서 연구자가 원천기술 연구에 집중할 수 있는 환경을 누리게 된다.이번에 미공군연구소 지정연구실로 선정된 여 교수 연구팀은 실험과 모델링 접근 방식을 활용해 다양한 리튬이온 배터리에서 발생하는 열폭주의 원리를 명확하게 규명하고 열폭주 방지 기술을 개발하는 데 연구의 중점을 둘 방침이다.해당 연구는 에너지 저장 시스템(ESS), 전기 추진 항공기 등 여러 전기 모빌리티 분야에서 배터리 안정성의 대폭적 향상에 중요한 역할을 할 것으로 기대된다.최근 배터리로 인한 전기차 화재 및 폭발 사고가 잇따르면서, 연소공학의 한 분야인 열폭주(thermal runway) 현상이 문제의 핵심 원인으로 주목받고 있다.열폭주는 배터리 내부의 인화성 구성물질이 화학 반응을 일으켜 온도가 급격히 상승하면서 폭발 단계까지 이르는 현상이다.여 교수는 2023년 12월 차세대 2차 전지의 핵심 기술로 주목받는 전고체 배터리 역시 일반 리튬이온 배터리와 마찬가지로 열폭주 현상으로부터 자유롭지 않다는 연구 결과를 연소공학 분야 최고 저널인 Combustion and Flame에 발표한 바 있다.그간 2차 전지 관련 국내 기업 및 연구재단의 기초연구 지원을 받아 배터리 열폭주 연구를 진행해 온 여 교수는 연소공학 분야에서 SCI급 학술지 교신저자 논문 180여 편의 연구 실적을 보유하고 있다.미공군연구소 지정연구실 선정을 통해 여재익 교수가 수행한 연구의 독창성과 기술 확장성이 인정받았다는 평가다.해당 연구에서 개발될 기술은 미래 모빌리티의 전 분야에서 안전성 제고 및 성능 극대화에 중추적인 기술로 자리매김할 전망이다.여재익 교수는 “이번 선정은 전기 주도 연소 시스템의 원천적인 반응 메커니즘을 규명하고, 나아가 의도적으로 열폭주를 가능케 하는 차세대 무기체계 및 위성 추진 시스템에서의 적용 가능성도 확인하는 기초 연구의 든든한 토대를 구축했다는 점에서 그 의미가 크다”고 전했다.
1